
International Journal of Theoretical Physics, Vol. 46, No. 4, April 2007 ( C© 2007)
DOI: 10.1007/s10773-006-9258-1

Field Equations of Arbitrary Spin in Space-time
with Torsion

Antonio Zecca1

Received May 4, 2006; accepted September 5, 2006
Published Online: February 21 2007

A two spinor lagrangian formulation of field equations for massive particle of arbitrary
spin is proposed in a curved space-time with torsion. The interaction between fields and
torsion is expressed by generalizing the situation of the Dirac equation. The resulting
field equations are different (except for the spin-1/2 case) from those obtained by
promoting the covariant derivatives of the torsion free equations to include torsion.
The non linearity of the equations, that is induced by torsion, can be interpreted as a
self-interaction of the particle. The spin-1 and spin-3/2 cases are studied with some
details by translating into tensor form. There result the Proca and Rarita-Schwinger
field equations with torsion, respectively.

KEY WORDS: field equations in curved space-time; torsion; Proca fields; Rarita-
Schwinger fields.
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1. INTRODUCTION

The formulation of arbitrary spin massive field equations in curved space-
time has received a consistent form after the papers by Illge (1993); Illge and
Schimming (1999); Wünsch (1985); Buchdahl (1982) (see also references therein).
It seems natural to extend that formulation to include torsion. This is of interest
because torsion adds new degrees of freedom to the theory that could be used to
describe further possible physical interactions. Torsion effects have been variously
considered in the literature. They generally amount in adding non-linear terms to
the field equations (e.g., Hehl et al., 1976; Shapiro, 2002). Some results for specific
value of the spin are the following.

The scalar field equation can be generalized to include torsion in different
ways. The possible non minimal action extensions are exposed, e.g., in Buchbinder
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et al. (1992). There are scalar field equations with torsion that, even if non linear,
still admit plane wave solutions (Zecca, 2002c).

The Dirac equation with torsion can be obtained, on general tensor grounds,
from a well known scalar action whose lagrangian is a scalar both under coordinate
change and Lorentz rotations (Nakahara, 1990; Weinberg, 1972). The equation can
be equivalently obtained by promoting the covariant derivative of the usual spinor
formulation to include torsion (Zecca, 2002, 2002b). In Minkowski space-time
the Dirac equation with torsion still admits of plane wave solutions (Zecca, 2003).
Perturbation of the energy spectrum of the Hydrogen atom induced by torsion re-
sults to be (Zecca, 2002a) smaller than the pure gravitational perturbation (Parker,
1980). Effect of torsion on neutrino oscillations has been studied in different space-
time models (Cardall and Fuller, 1997; Zhang, 2000, 2005; Alimohammadi and
Shariati, 1999; Zecca, 2004). Also effects of torsion on anomalies have been dis-
cussed for the Standard Model in curved space-time by Dobado and Maroto (1996).

For what concerns the spin-1 equation with torsion, the formulations by Seitz
(1986) and Spinosa (1987) lead to the study of the equation of motion of a “Proca
test particle” in the background of a Rieman-Cartan gravity in tensor form. There
exist a two spinor formulation of the spin-1 equation with torsion (Zecca, 2002d).
It is based on a torsion interaction term that extends the one of the Dirac equation.

The object of the present paper is of generalizing to arbitrary spin value the
formulation of the spin-1/2 and spin-1 equations with torsion. To that end the
spin-1 case is preliminary reconsidered with improvements and specialization in
terms of Proca fields equations with torsion. Then the Lagrangian formulation for
arbitrary spin massive field equation with torsion in a general curved space-time
is proposed. The field equations are derived by an action principle by varying
also with respect to torsion. On account of the assumed special Dirac-like torsion
interaction, the resulting equations are different (except for s = 1/2) from those
obtained by promoting the derivatives of the torsion free case to include torsion.
The equations are non linear. They can be interpreted to describe the motion of a
particle with self-interaction induced by torsion.

The physical interpretation is detailed in case of spin-3/2. By translating into
the tensor language, one recovers the Rarita-Schwinger equations with torsion.

The formalism of the equations becomes rapidly cumbersome by increasing
the value of the spin. However, in principle, one could proceed by distinguishing
between bosons and fermions, as done here for the spin-1 and spin-3/2 cases. The
formalism developed by Illge (1993) for bosons and fermions should give the right
indication to proceed in the general case.

Finally note that the present treatment does not cover the most general a
priori possible interaction with torsion. Here the interaction with torsion is that of
the Dirac equation elementarly extended to higher spin values.



Field Equations of Arbitrary Spin in Space-time with Torsion 1047

2. ASSUMPTIONS AND PRELIMINARY RESULTS

The following considerations are developed in a four dimensional (curved)
space-time of metric tensor gik with associated spinor and tensor formalism. (For
notations and mathematical conventions we refer to Penrose and Rindler (1984)
and Chandrasekhar (1983). The standard correspondence between complex ten-
sors of rank n and spinors of type (n, n), that can be realized by the van der Waerden
σ -matrices, is denoted by ↔ (e.g.: ∇α ↔ ∇AA′ = σα

AA′∇α). Accordingly any co-
variant derivative ˜∇ can be decomposed into the unique torsion free derivative ∇,
that can be derived from the metric tensor through the Chrisoffel coefficients, and
a contorsion dependent part

˜∇αUβ = ∇αUβ + Q β
αγ Uγ (1)

The contorsion tensor is related to the torsion tensor ˜T associated to ˜∇ by ˜T
γ

αβ =
−Q

γ

αβ + Q
γ

βα . Correspondingly the action of ˜∇, ∇ on spinors is characterized
by

˜∇AB ′χPS ′ = ∇AB ′χPS ′ + � P
AB ′X χXS ′ + �̄ S ′

A′BX′ χPX′

Qabc ↔ �AX′BC εY ′Z′ + �̄X′AY ′Z′ εBC (2)

�AX′BC = �AX′CB (˜∇aεAB = ∇aεAB = 0)

From the decompositions (1), (2) any spinor or tensor expression can be decom-
posed into a torsion free and a torsion dependent part. In particular this holds for
the scalar curvature ˜R = ˜R

αβ

αβ . By further symmetrizing the unprimed indexes
of �

�AA′BC = �(A|A′|BC) − i

3
(εABZA′C + εACZA′B)

ZA′B = i� A
AA′B

(

Z̄AB ′ = −i�̄ A′
A′AB ′

)

(3)

the Einstein–Hilbert–Cartan Lagrangian density Lg = √|g|˜R, (g = det gµν) can
be splitted into

Lg =
√

|g|
{

R − 4

3
(ZB ′DZB ′D + Z̄BD′Z̄BD′

)

−�(A|A′|BC)�
(A|A′|BC) − �̄(A′|A|B ′C ′)�̄

(A′|A|B ′C ′)

}

(4)

A divergence term originated from the complete expression of ˜R has been ne-
glected because no boundary variations will be considered when applying the
action priciple. In the following Sections the field equations for massive par-
ticles of arbitrary spin s will be derived by starting from a general lagrangian
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L = Lg + Ls where Ls expresses the special features of the field under consider-
ation, contains at most first derivatives of the field spinors and an interaction with
torsion. The corresponding Euler-Lagrange equations are of the form

∂L

∂ξa
− ∇

XY ′

( ∂L

∂∇
XY ′ ξ

a

)

= 0. (5)

The equation will be applied to any independent spinor ξa on which the Lagrangian
depends.

3. SPIN 1 FIELD EQUATION WITH TORSION

The spin-1 equation can be characterized by four spinors φAB =
φBA, χAB ′ , ξA′B ′ = ξB ′A′ , θAB ′ in such a way that the system of equations sat-
isfied by (ξ, θ ) is the complex conjugates of that relative to (φ, χ ). This can be
achieved, by including also torsion, from the following lagrangian:

g− 1
2 L1 = a

[

θ̄X′(B∇A)
X′ φAB + χ (B|X′|∇A)

X′ ξ̄AB

]

+ b
[

φAB∇X′
(A θ̄|X′|B) + ξ̄ AB∇X′

(AχB)X′
]

+ ā
[

θA(Y ′∇X′)
A φ̄X′Y ′ + χ̄ (X′|A|∇Y ′)

A ξX′Y ′
]

+ b̄
[

φ̄X′Y ′∇A
(X′θ|A|Y ′) + ξX′Y ′∇A

(X′ χ̄Y ′)A
]

+ (a + b)
[

µ χAX′ θ̄X′A − ν φABξ̄AB
]

+ (ā + b̄)
[

µ̄ χ̄X′AθAX′ − ν̄ φ̄X′Y ′ξX′Y ′]

+ (a + b)
[

A0φAB

(

ZX′(A − Z̄(A|X′|)θ̄B)
X′

+C0χBX′
(

ZX′(A − Z̄(A|X′|)ξ̄ B)
A

)] −
− (ā + b̄)

[

B0φ̄A′B ′
(

Z̄X(A′ − Z(A′|X|)θB ′)
X

+D0χ̄B ′X
(

Z̄X(A′ − Z(A′|X|)ξB ′)
A′

])

(6)

with µν = −m2, m the mass of the particles of the fields, a, b complex numbers,
a + b �= 0. By applying Eq. (5) with L = Lg + L1 and varying with respect to
θ̄ , ξ̄ , χ̄ , φ̄, �̄(A|B ′|CD), ZB ′A, Z̄AB ′ one obtains the system of equations

[∇A
X′ − A0

(

ZA
X′ − Z̄A

X′
)]

φAB = −µχBX′ (7)

[∇X′
(A − C0

(

ZX′
(A − Z̄X′

(A

)]

χB)X′ = νφAB (8)

[∇Y ′
A + D0

(

ZY ′
A − Z̄Y ′

A

)]

ξX′Y ′ = −µ̄θAX′ (9)
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[∇A
(X′ + B0

(

ZA
(X′ − Z̄A

(X′
)]

θ|A|Y ′) = ν̄ξX′Y ′ (10)

ZX′A = 3

8

{

A0(a + b)
[

φABθ̄B
X′ − χBX′ ξ̄ B

A

] − (ā + b̄)Ā0
[

φ̄X′B ′θB ′
A − χ̄B ′AξB ′

X′
]}

(11)

Z̄AX′ = −ZX′A (12)

�(A|B ′|CD) = 0 (13)

By requiring that the Eqs. (7–10) just obtained coincide with those obtained
by varying with respect to θ, ξ, χ, φ respectively and then requiring that the
Eqs. (9,10) be the complex conjugates of Eqs. (7,8) one gets

B0 = −Ā0, C0 = −A0, D0 = Ā0 (14)

These conditions has been already used in Eqs. (11,12) and will be assumed to
hold in the following.

The spin-1 field equation with torsion are then given by the Eqs. (7–10) where
it is understood that Z and Z̄ have the explicit expression given by Eqs. (11,12).
Therefore the equations come out to be non linear equations. The non linear terms
are induced by torsion and can be interpreted as due to self interaction of the
particle.

By setting, as in the torsion free case,

JAX′ = (a + b)A0
[

φA
B θ̄X′B +χX′

B ξ̄AB
]−(ā + b̄)Ā0

[

φ̄X′
B ′ θ

AB ′ +χ̄A
B ′ξ

B ′X′]
(15)

then the spinor JAX′
still plays the role of a conserved current. Indeed one can

check that ∇AX′JAX′ = 0 once the spinors satisfy the Eqs. (7)–(12). Instead JAX′

is not conserved with respect to ˜∇. One has

˜∇AX′JAX′ = −2iZX′AJAX′ �= 0 (16)

[Notice that JX′A and ZX′A are not proportional as erroneously maintained, on
account of sign errors, in Zecca (2002d). One can also check that Z is not conserved
in the sense of the torsion free derivative ∇].

It is possible to give a physical interpretation of the above scheme, for spin-1
particle, in a special case. Suppose indeed θ ≡ χ and choose ν = −2, µ = m2/4.
Define

Ua ↔ χAX′

Hab ↔ φAB εX′Y ′ + ξX′Y ′ εAB (17)
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Consider then the results

∇[aUb] ↔ 1

2

[

εX′Y ′∇(A|Z′|χZ′
B) + εAB∇C(X′χC

Y ′)
]

(18)

QcabU
c ↔ − i

3

(

εX′Y ′ZA′(AχA′
B) + εABZ(Y ′|X|χX

X′)
)

(19)

Habq
b ↔ −i

(

ZX′BφB
A + ZY ′AξY ′

X′
)

(20)

(qb ↔ � A
AY ′B = −iZY ′B)

where a ≡ AX′, b ≡ BY ′, c ≡ CZ′ and Z has the expression (11). Then by
using also the field equations, the Eq. (12) and by choosing A0 = iα (α ∈ R), one
obtains

∇aUb − ∇bUa = Hab + 3αQcabU
c

∇cHac = m2

2
Ua − 2αHabq

b (21)

The Eq. (21) can be interpreted as Proca fields equations with torsion. Note the
in some sense symmetric role torsion plays in the equations. From Eqs. (19, 20,
and 11) there also follows that the torsion dependent terms introduces a non linear
modification of the original torsion free Proca equations. Finally the conserved
current has the Proca fields representation

JAX′ ↔ −iα(a + b)
(

Ha
bŪ

b − H̄ a
bU

b
)

(22)

that, of course, is the same of the torsion free scheme (e.g., Illge, 1993).

4. FIELDS EQUATIONS FOR ARBITRARY SPIN WITH TORSION

The scheme for the spin-1 field equation with torsion can be extended to fields
of arbitrary spin s = n+1

2 by maintaining the Dirac-like interaction with torsion. For
spinors φ, χ, θ, ξ with symmetry properties φAA1..An

= φ(AA1..An), ξA′A′
1..A

′
n
=

ξ(A′A′
1..A

′
n), θAX′

1..X
′
n
= θA(X′

1..X
′
n), χA1..AnX′ = χ(A1A2..An)X′ that goal can be reached

by the Lagrangian

g− 1
2 Ls = a

[

θ̄X′(A1..An∇A)
X′ φAA1..An

+ χ X′
(A1..An

∇A)X′ ξ̄ AA1..An
]

+ b
[

φAB1..Bn
∇(A|X′|θ̄B1..Bn)

X′ + ξ̄ AB1..Bn∇X′
(A χB1B2..Bn)X′

]

+ ā
[

θA(X′
1..X

′
n∇X′)

A φ̄X′X′
1..X

′
n
+ χ̄ A

(X′
1X

′
2..X

′
n

∇|A|Y ′) ξ
Y ′X′

1X
′
2..X

′
n

]

+ b̄
[

φ̄X′X′
1..X

′
n
∇A(X′

θ
X′

1..X
′
n)

A + ξX′X′
1..X

′
n∇A

(X′ χ̄
A
X′

1..X
′
n)A

]

+ (a + b)
[

µ χA1..AnX′ θ̄X′A1..An − ν φAA1..An
ξ̄AA1..An

]
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+ (ā + b̄)
[

µ̄ χ̄X′
1..X

′
nX

θXX′
1..X

′
n − ν̄ φ̄A′A′

1..A
′
n
ξA′A′

1..A
′
n

]

+ (a + b)
[

A0φAB1..Bn

(

ZX′(A − Z̄(A|X′|)θ̄B1..Bn)
X′

−A0χ
X′

(B1..Bn

(

Z|X′|A) − Z̄A)X′
)

ξ̄ AB1..Bn
)]

+ (ā + b̄)
[

Ā0φ̄A′B ′
1..B

′
n

(

Z̄X(A′ − Z(A′|X|)θB ′
1..B

′
n)

X

− Ā0χ̄
X

(B ′
1..B

′
n

(

Z̄|X|A′) − ZA′)X

)

ξA′B ′
1..B

′
n

]

(23)

Indeed, by varying with respect to θ̄ , ξ̄ , χ̄ , φ̄, the Euler-Lagrange Eq. (5) gives
now the system of coupled equations

[∇A
X′ − A0

(

ZA
X′ − Z̄A

X′
)]

φAA1A2..An
= −µχA1A2..AnX′ (24)

[∇X′
(A + A0

(

ZX′
(A − Z̄X′

(A

)]

χB1..Bn)X′ = νφAB1..Bn
(25)

[∇Y ′
A + Ā0

(

ZY ′
A − Z̄Y ′

A

)]

ξY ′X′
1..X

′
n
= −µ̄θAX′

1..X
′
n

(26)
[∇A

(X′ − Ā0
(

ZA
(X′ − Z̄A

(X′
)]

θ|A|X′
1..X

′
n) = ν̄ξX′X′

1..X
′
n

(27)

ZX′A = 3

8
A0(a + b)

[

φAB1..Bn
θ̄

B1..Bn

X′ − χB1..BnX′ ξ̄
B1..Bn

A

]

−3

8
(ā + b̄)Ā0

[

φ̄X′B ′
1..B

′
n
θ

B ′
1..B

′
n

A − χ̄B ′
1..B

′
nA

ξ
B ′

1..B
′
n

X′
]

(28)

Z̄AX′ = −ZX′A (29)

�(A|B ′|CD) = 0 (30)

The equations that could be obtained by varying φ, χ, θ ξ reproduce the Eqs.
(24–30) and, as required, the system (26, 27) is the complex conjugate of the
system (24, 25). As a consequence of the results (28, 29), that must be considered
into Eqs. (24–27), torsion introduces non linearity in the equations. Also in the
present general case the equations are interpreted as to describe a particle with
self-interaction produced by torsion. Here, again as in the torsion free case, one
can represent the current by the spinor

JAX′ = (a + b)A0
[

φA
A1..An

θ̄X′A1..An + χ X′
B1..Bn

ξ̄AB1..Bn
]

− (ā + b̄)Ā0
[

φ̄X′
A′

1..A
′
n
θAA′

1..A
′
n + χ̄ A

A′
1..A

′
n

ξX′A′
1..A

′
n

]

(31)

One can check that, when expressed in terms of the solutions of the equations, the
current remains conserved with respect to ∇ but not with respect to ˜∇:

∇AX′JAX′ = 0, ˜∇AX′JAX′ = −2iZX′AJAX′
(32)
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The formalism has been developed by refering, in the torsion free case, to the one
given by Illge (1993). One could go on in the analogy by distinguishing between
bosonic and fermionic fields. It remains however the problem of a more specific
physical interpretation of the equations. For this reason, in the last Section, we
study the special case of the spin-3/2 equation with torsion that, as far as the author
knows, has not been considered from this point of view.

5. INTERPRETATION OF SPIN-3/2 FIELD EQUATIONS
WITH TORSION

The special case s = 3/2, (n = 1) of the general scheme of the previous
Section can be reported to a tensor form whose physical interpretation can be
easily given. To see this, define the field functions (e.g., Illge, 1993)

ψab ↔ 1√
2

(

φA1A2
B εX′

1X
′
2
+ θX′

1X
′
2

B εA1A2

χA1A2X′ εX′
1X

′
2
+ ξX′

1X
′
2X

′ εA1A2

)

(33)

ψ+
ab ↔ 1√

2

(

ξ̄A1A2A εX′
1X

′
2
+ χ̄X′

1X
′
2A

εA1A2

θ̄A1A2
Y ′

εX′
1X

′
2
+ φ̄X′

1X
′
2

Y ′
εA1A2

)

where a ≡ A1X
′
1, b ≡ A2X

′
2 and consider also the operators N, M,

→
∇,

←
∇ de-

fined by

N [χ ]A1A2A ≡ (∇X′
(A + 2A0Z

X′
(A

)

χA1A2)X′

N [ξ ]X′
1X

′
2A

≡ (∇Y ′
A + 2Ā0Z

Y ′
A

)

ξX′
1X

′
2Y

′ (34)

M[φ]A1A2X′ ≡ (∇A
X′ − 2A0Z

A
X′

)

φAA1A2

M[θ ]X′
1X

′
2X

′ ≡ (∇A
(X′ − 2Ā0Z

A
(X′

)

θX′
1X

′
2)A

→
∇ ψab ↔ i

(

N [χ ]A1A2
A εX′

1X
′
2
+ N [ξ ]X′

1X
′
2

A εA1A2

−M[φ]A1A2Y ′ εX′
1X

′
2
− M[θ ]X′

1X
′
2Y

′ εA1A2

)

(35)
(

ψ+ ←
∇ )

a′b′ ↔ i

(

−N [φ̄]A′
1A

′
2X

εX1X2 − N [θ̄ ]XX1X2 εA′
1A

′
2

M[χ̄]A′
1A

′
2

A εX1X2 + M[ξ̄ ]X1X2
A εA′

1A
′
2

)

with a′ ≡ A′
1X1, b′ ≡ A′

2X2. Then one obtains the following results

ψ+
ab(

→
∇ ψab) = i

√
2
[

(ξ̄ , N [χ ]) + (χ̄ , N[ξ ]) + (θ̄ ,M[φ]) + (φ̄,M[θ ])
]

(ψ+
ab

←
∇)ψab = i

√
2
[ − (N [φ̄], θ ) − (N [θ̄], φ) − (M[χ̄], ξ ) − (M[ξ̄ ], χ )

]

(36)

ψ+
abψ

ab = (ξ̄ , φ) + (χ̄ , θ ) − (θ̄ , χ ) − (φ̄, ξ )



Field Equations of Arbitrary Spin in Space-time with Torsion 1053

where (α, β) = αA1A2X′βA1A2X
′ = −(β, α) for α, β spinors of the same kind.

By taking into account these results and by choosing µ = ν = im
√

2/4,

a = b = −i
√

2 in Eq. (23), one finds that the Lagrangian L3/2 can be written

g−1/2L3/2 = ψ+
ab(

→
∇ ψab) − (ψ+

ab

←
∇)ψab + mψ+

abψ
ab (37)

Correspondingly the field functions ψab are found to satisfy the field equations

→
∇ ψab + mψab = 0

γ aγ bψab = 0 (37)

where the γ -matrices are defined through the σ -matrices by γa =
√

2

(

0 σAX′
a

σaY ′B 0

)

(e.g., Penrose and Rindler, 1984). The second Eq. (38) is

automatically satisfied, as it can be checked, because both φ and ξ are assumed to
be symmetric spinors in all their indexes. The field functions ψab satisfy therefore
the Eq. (38) that characterize the Rarita-Schwinger fields (e.g., Illge, 1993; in flat
space-time Lurié, 1968). In spite of the strong similarity with the torsion free case,
here the equation are non linear. The non linearity of the equations is contained

in the action of
→
∇ because by the defining relations (34), it contains the spinor Z

that in turn depends on the unknown spinors as in Eq. (27) for n = 1.
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